Molecular substrates of action control in cortico-striatal circuits.

نویسندگان

  • Michael W Shiflett
  • Bernard W Balleine
چکیده

The purpose of this review is to describe the molecular mechanisms in the striatum that mediate reward-based learning and action control during instrumental conditioning. Experiments assessing the neural bases of instrumental conditioning have uncovered functional circuits in the striatum, including dorsal and ventral striatal sub-regions, involved in action-outcome learning, stimulus-response learning, and the motivational control of action by reward-associated cues. Integration of dopamine (DA) and glutamate neurotransmission within these striatal sub-regions is hypothesized to enable learning and action control through its role in shaping synaptic plasticity and cellular excitability. The extracellular signal regulated kinase (ERK) appears to be particularly important for reward-based learning and action control due to its sensitivity to combined DA and glutamate receptor activation and its involvement in a range of cellular functions. ERK activation in striatal neurons is proposed to have a dual role in both the learning and performance factors that contribute to instrumental conditioning through its regulation of plasticity-related transcription factors and its modulation of intrinsic cellular excitability. Furthermore, perturbation of ERK activation by drugs of abuse may give rise to behavioral disorders such as addiction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms of hierarchical reinforcement learning in cortico-striatal circuits 2: evidence from fMRI.

The frontal lobes may be organized hierarchically such that more rostral frontal regions modulate cognitive control operations in caudal regions. In our companion paper (Frank MJ, Badre D. 2011. Mechanisms of hierarchical reinforcement learning in corticostriatal circuits I: computational analysis. 22:509-526), we provide novel neural circuit and algorithmic models of hierarchical cognitive con...

متن کامل

Changes of cortico-striatal effective connectivity during visuomotor learning.

It has been suggested that the cortico-striatal system might play a crucial role in learning behavioural plans of action. We have tested this hypothesis by studying the dynamics of functional coupling among the neural elements of cortico-striatal circuitry. Human cerebral activity was measured with functional magnetic resonance imaging (fMRI) during the learning of an associative visuomotor tas...

متن کامل

Neural Coding Strategies in Cortico-Striatal Circuits Subserving Interval Timing

Neural Coding Strategies in Cortico-Striatal Circuits Subserving Interval Timing by

متن کامل

The integrative function of the basal ganglia in instrumental conditioning.

Recent research in instrumental conditioning has focused on the striatum, particularly the role of the dorsal striatum in the learning processes that contribute to instrumental performance in rats. This research has found evidence of what appear to be parallel, functionally and anatomically distinct circuits involving dorsomedial striatum (DMS) and dorsolateral striatum (DLS) that contribute to...

متن کامل

Connectivity-based segmentation of the striatum in Huntington's disease: vulnerability of motor pathways.

The striatum, the primary site of degeneration in Huntington's disease (HD), connects to the cerebral cortex via topographically organized circuits subserving unique motor, associative and limbic functions. Currently, it is not known whether all cortico-striatal circuits are equally affected in HD. We aimed to study the selective vulnerability of individual cortico-striatal circuits within the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Progress in neurobiology

دوره 95 1  شماره 

صفحات  -

تاریخ انتشار 2011